- cross-posted to:
- programming@programming.dev
- cross-posted to:
- programming@programming.dev
Why can’t we have nice things instead.
I mean, this kind of stuff was going to happen.
The more-important and more-widely-used open source software is, the more appealing supply-chain attacks against it are.
The world where it doesn’t happen is one where open source doesn’t become successful.
I expect that we’ll find ways to mitigate stuff like this. Run a lot more software in isolation, have automated checking stuff, make more use of developer reputation, have automated code analysis, have better ways to monitor system changes, have some kind of “trust metric” on packages.
Go back to the 1990s, and most everything I sent online was unencrypted. In 2024, most traffic I send is encrypted. I imagine that changes can be made here too.
I believe you. There is no AI ever made that could have as bad a grammar as you. ;)
Because people have forgotten that bad actors exist.
I don’t know much about NPM (having avoided JS as much as possible for my entire life), but golang seems to have a good solution: ‘vendoring’. One can choose to lock all external dependencies to local snapshots brought into a project, with no automatic updating, but with the option to manually update them when desired.
I’m with you but I have regrettably been sucked into the node-i-verse against my will.
I don’t think that that’s a counter to the specific attack described in the article:
The malicious packages have names that are similar to legitimate ones for the Puppeteer and Bignum.js code libraries and for various libraries for working with cryptocurrency.
That’d be a counter if you have some known-good version of a package and are worried about updates containing malicious software.
But in the described attack, they’re not trying to push malicious software into legitimate packages. They’re hoping that a dev will accidentally use the wrong package (which presumably is malicious from the get-go).
NPM has that as well. In fact most languages and build tools support that. It’s actually rare to not have support for that these days.
Ah, good. I wonder why it isn’t used more often – this wouldn’t be such a huge problem then I would hope. (Let me guess – ‘convenience’, the archenemy of security.)
Because it doesn’t really solve much. After every update of external libraries, do you go through all the diffs to see if there is malicious code? Of course you don’t. And even if you would, it’s not even always possible to spot it. So all locking packages does is postpone the problem to when you eventually update. As an added bonus, you’re now vulnerable to all the legitimate issues that get fixed in those updates you’re not installing regularly.
Tale as old as time.
This should kill off NPM
You’d be surprised to see how many common libraries have vulnerabilities every week.
As well as how many common JS libraries, while not malicious have no business existing (ex. IsEven).
Why stop there lets just kill js in its entirity.
Not really a language-specific problem. Like, there are numerous languages that have distribution mechanisms for libraries that might potentially be malicious.
Only way I can think that the language might be a factor would be if a language were designed to only run in a restricted mode.
Not really a language-specific problem, but why should that stop us from this goal?
Exactly