• lemmyng@lemmy.ca
    link
    fedilink
    English
    arrow-up
    112
    ·
    3 months ago

    Moore’s law is about circuit density, not about storage, so the premise is invalidated in the first place.

    There is research being done into 5D storage crystals, where a disc can theoretically hold up to 360TB of data, but don’t hold your breath about them being available soon.

    • sorghum@sh.itjust.works
      link
      fedilink
      English
      arrow-up
      14
      ·
      3 months ago

      I always thought the holographic 3D discs were going to be a really cool medium in the infacy days of bluray and hd-dvd. I can’t believe that’s is been over a decade since the company behind it went bankrupt.

    • HamsterRage@lemmy.ca
      link
      fedilink
      English
      arrow-up
      5
      ·
      3 months ago

      This is true, but…

      Moore’s Law can be thought of as an observation about the exponential growth of technology power per $ over time. So yeah, not Moore’s Law, but something like it that ordinary people can see evolving right in front of their eyes.

      So a $40 Raspberry Pi today runs benchmarks 4.76 times faster than a multimillion dollar Cray supercomputer from 1978. Is that Moore’s Law? No, but the bang/$ curve probably looks similar to it over those 30 years.

      You can see a similar curve when you look at data transmission speed and volume per $ over the same time span.

      And then for storage. Going from 5 1/4" floppy disks, or effing cassette drives, back on the earliest home computers. Or the round tapes we used to cart around when I started working in the 80’s which had a capacity of around 64KB. To micro SD cards with multi-terabyte capacity today.

      Same curve.

      Does anybody care whether the storage is a tape, or a platter, or 8 platters, or circuitry? Not for this purpose.

      The implication of, “That’s not Moore’s Law”, is that the observation isn’t valid. Which is BS. Everyone understands that that the true wonderment is how your Bang/$ goes up exponentially over time.

      Even if you’re technical you have to understand that this factor drives the applications.

      Why aren’t we all still walking around with Sony Walkmans? Because small, cheap hard drives enabled the iPod. Why aren’t we all still walking around with iPods? Because cheap data volume and speed enabled streaming services.

      While none of this involves counting transistors per inch on a chip, it’s actually more important/interesting than Moore’s Law. Because it speaks to how to the power of the technology available for everyday uses is exploding over time.

      • ch00f@lemmy.world
        link
        fedilink
        English
        arrow-up
        6
        ·
        3 months ago

        Moore’s law factored in cost, not just what was physically possible.

        The complexity for minimum component costs has increased at a rate of roughly a factor of two per year. Certainly over the short term this rate can be expected to continue, if not to increase. Over the longer term, the rate of increase is a bit more uncertain, although there is no reason to believe it will not remain nearly constant for at least 10 years.

      • Random_Character_A@lemmy.world
        link
        fedilink
        English
        arrow-up
        4
        ·
        3 months ago

        About 5 years ago I pirated all the games ever normally published for my childhood gaming system and my friends different gaming system.

        If I went to the past and told that to my younger self and that it all fits in a pinky finger nail sized medium, I wouldn’t have belived me. It’s just so far out there.

      • rebelsimile@sh.itjust.works
        link
        fedilink
        English
        arrow-up
        1
        ·
        3 months ago

        Yeah taken as a guideline and observation that computer speeds/storage/etc continue to improve, I think it’s fair. It may not always be double, but it is still significantly different than other physical processes which have “stagnated” by a similar metric (like top speed on an average vehicle or miles per gallon).

    • JackGreenEarth@lemm.ee
      link
      fedilink
      English
      arrow-up
      2
      ·
      3 months ago

      Probably a stupid question, but how can the crystals be 5d if oir universe is (at a meaningful scale) 4d?

      • lemmyng@lemmy.ca
        link
        fedilink
        English
        arrow-up
        4
        ·
        3 months ago

        Not a stupid question at all. Here’s the Wikipedia article for it. The significant part is this:

        The 5-dimensional discs [have] tiny patterns printed on 3 layers within the discs. Depending on the angle they are viewed from, these patterns can look completely different. This may sound like science fiction, but it’s basically a really fancy optical illusion. In this case, the 5 dimensions inside of the discs are the size and orientation in relation to the 3-dimensional position of the nanostructures. The concept of being 5-dimensional means that one disc has several different images depending on the angle that one views it from, and the magnification of the microscope used to view it. Basically, each disc has multiple layers of micro and macro level images.

      • catloaf@lemm.ee
        link
        fedilink
        English
        arrow-up
        2
        ·
        3 months ago

        Wavelength could add a dimension. For example, if you have an optical disc (2D) that can be read and written separately by red and blue lasers, that makes it 3D.

        • GiveMemes@jlai.lu
          link
          fedilink
          English
          arrow-up
          2
          ·
          3 months ago

          That’s neat, so it’s using a trick of mathematics and physics to store info in greater dimensionality than just what the physical universe is limited to? Kinda like how we can use coordinates to represent 4d points on a graph even if we can’t really visualize it?

          • catloaf@lemm.ee
            link
            fedilink
            English
            arrow-up
            1
            ·
            3 months ago

            Yes. Generally, “three dimensions” refers to three spatial dimensions: left/right, up/down, forward/backward. And then the fourth dimension is usually time. But if you’re not talking about movement in space/time, you can have as many dimensions as you want. For example, in a video game, you can have movement in three dimensions, but you could also allow the player to move through time (fourth dimension), change characters that interact with the world differently (fifth), and so on.